Hibernate.orgCommunity Documentation
As an Object/Relational Mapping solution, Hibernate deals with both the Java and JDBC representations of application data. An online catalog application, for example, most likely has Product
object with a number of attributes such as a sku
, name
, etc. For these individual attributes, Hibernate must be able to read the values out of the database and write them back. This 'marshalling' is the function of a Hibernate type, which is an implementation of the org.hibernate.type.Type
interface. In addition, a Hibernate type describes various aspects of behavior of the Java type such as "how is equality checked?" or "how are values cloned?".
A Hibernate type is neither a Java type nor a SQL datatype; it provides a information about both.
When you encounter the term type in regards to Hibernate be aware that usage might refer to the Java type, the SQL/JDBC type or the Hibernate type.
Hibernate categorizes types into two high-level groups: value types (see 第 6.1 节 “Value types”) and entity types (see 第 6.2 节 “Entity types”).
The main distinguishing characteristic of a value type is the fact that they do not define their own lifecycle. We say that they are "owned" by something else (specifically an entity, as we will see later) which defines their lifecycle. Value types are further classified into 3 sub-categories: basic types (see 第 6.1.1 节 “Basic value types”), composite types (see 第 6.1.2 节 “Composite types”) amd collection types (see 第 6.1.3 节 “Collection types”).
The norm for basic value types is that they map a single database value (column) to a single, non-aggregated Java type. Hibernate provides a number of built-in basic types, which we will present in the following sections by the Java type. Mainly these follow the natural mappings recommended in the JDBC specification. We will later cover how to override these mapping and how to provide and use alternative type mappings.
org.hibernate.type.StringType
Maps a string to the JDBC VARCHAR type. This is the standard mapping for a string if no Hibernate type is specified.
Registered under string
and java.lang.String
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.MaterializedClob
Maps a string to a JDBC CLOB type
Registered under materialized_clob
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.TextType
Maps a string to a JDBC LONGVARCHAR type
Registered under text
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.CharacterType
Maps a char or java.lang.Character
to a JDBC CHAR
Registered under char
and java.lang.Character
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.BooleanType
Maps a boolean to a JDBC BIT type
Registered under boolean
and java.lang.Boolean
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.NumericBooleanType
Maps a boolean to a JDBC INTEGER type as 0 = false, 1 = true
Registered under numeric_boolean
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.YesNoType
Maps a boolean to a JDBC CHAR type as ('N' | 'n') = false, ( 'Y' | 'y' ) = true
Registered under yes_no
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.TrueFalseType
Maps a boolean to a JDBC CHAR type as ('F' | 'f') = false, ( 'T' | 't' ) = true
Registered under true_false
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.ByteType
Maps a byte or java.lang.Byte
to a JDBC TINYINT
Registered under byte
and java.lang.Byte
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.ShortType
Maps a short or java.lang.Short
to a JDBC SMALLINT
Registered under short
and java.lang.Short
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.IntegerTypes
Maps an int or java.lang.Integer
to a JDBC INTEGER
Registered under int
and java.lang.Integer
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.LongType
Maps a long or java.lang.Long
to a JDBC BIGINT
Registered under long
and java.lang.Long
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.FloatType
Maps a float or java.lang.Float
to a JDBC FLOAT
Registered under float
and java.lang.Float
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.DoubleType
Maps a double or java.lang.Double
to a JDBC DOUBLE
Registered under double
and java.lang.Double
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.BigIntegerType
Maps a java.math.BigInteger
to a JDBC NUMERIC
Registered under big_integer
and java.math.BigInteger
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.BigDecimalType
Maps a java.math.BigDecimal
to a JDBC NUMERIC
Registered under big_decimal
and java.math.BigDecimal
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.TimestampType
Maps a java.sql.Timestamp
to a JDBC TIMESTAMP
Registered under timestamp
, java.sql.Timestamp
and java.util.Date
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.TimeType
Maps a java.sql.Time
to a JDBC TIME
Registered under time
and java.sql.Time
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.DateType
Maps a java.sql.Date
to a JDBC DATE
Registered under date
and java.sql.Date
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.CalendarType
Maps a java.util.Calendar
to a JDBC TIMESTAMP
Registered under calendar
, java.util.Calendar
and java.util.GregorianCalendar
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.CalendarDateType
Maps a java.util.Calendar
to a JDBC DATE
Registered under calendar_date
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.CurrencyType
Maps a java.util.Currency
to a JDBC VARCHAR (using the Currency code)
Registered under currency
and java.util.Currency
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.LocaleType
Maps a java.util.Locale
to a JDBC VARCHAR (using the Locale code)
Registered under locale
and java.util.Locale
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.TimeZoneType
Maps a java.util.TimeZone
to a JDBC VARCHAR (using the TimeZone ID)
Registered under timezone
and java.util.TimeZone
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.UrlType
Maps a java.net.URL
to a JDBC VARCHAR (using the external form)
Registered under url
and java.net.URL
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.ClassType
Maps a java.lang.Class
to a JDBC VARCHAR (using the Class name)
Registered under class
and java.lang.Class
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.BlobType
Maps a java.sql.Blob
to a JDBC BLOB
Registered under blob
and java.sql.Blob
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.ClobType
Maps a java.sql.Clob
to a JDBC CLOB
Registered under clob
and java.sql.Clob
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.BinaryType
Maps a primitive byte[] to a JDBC VARBINARY
Registered under binary
and byte[]
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.MaterializedBlobType
Maps a primitive byte[] to a JDBC BLOB
Registered under materialized_blob
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.ImageType
Maps a primitive byte[] to a JDBC LONGVARBINARY
Registered under image
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.BinaryType
Maps a java.lang.Byte[] to a JDBC VARBINARY
Registered under wrapper-binary
, Byte[]
and java.lang.Byte[]
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.CharArrayType
Maps a char[] to a JDBC VARCHAR
Registered under characters
and char[]
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.CharacterArrayType
Maps a java.lang.Character[] to a JDBC VARCHAR
Registered under wrapper-characters
, Character[]
and java.lang.Character[]
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.UUIDBinaryType
Maps a java.util.UUID to a JDBC BINARY
Registered under uuid-binary
and java.util.UUID
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.UUIDCharType
Maps a java.util.UUID to a JDBC CHAR (though VARCHAR is fine too for existing schemas)
Registered under uuid-char
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.PostgresUUIDType
Maps a java.util.UUID to the PostgreSQL UUID data type (through Types#OTHER
which is how the PostgreSQL JDBC driver defines it).
Registered under pg-uuid
in the type registry (see 第 6.5 节 “Type registry”).
org.hibernate.type.SerializableType
Maps implementors of java.lang.Serializable to a JDBC VARBINARY
Unlike the other value types, there are multiple instances of this type. It gets registered once under java.io.Serializable
. Additionally it gets registered under the specific java.io.Serializable
implementation class names.
The Java Persistence API calls these embedded types, while Hibernate traditionally called them components. Just be aware that both terms are used and mean the same thing in the scope of discussing Hibernate.
Components represent aggregations of values into a single Java type. For example, you might have an Address class that aggregates street, city, state, etc information or a Name class that aggregates the parts of a person's Name. In many ways a component looks exactly like an entity. They are both (generally speaking) classes written specifically for the application. They both might have references to other application-specific classes, as well as to collections and simple JDK types. As discussed before, the only distinguishing factory is the fact that a component does not own its own lifecycle nor does it define an identifier.
It is critical understand that we mean the collection itself, not its contents. The contents of the collection can in turn be basic, component or entity types (though not collections), but the collection itself is owned.
Collections are covered in 第 7 章 集合映射(Collection mappings).
The definition of entities is covered in detail in 第 4 章 持久化类(Persistent Classes). For the purpose of this discussion, it is enough to say that entities are (generally application-specific) classes which correlate to rows in a table. Specifically they correlate to the row by means of a unique identifier. Because of this unique identifier, entities exist independently and define their own lifecycle. As an example, when we delete a Membership
, both the User
and Group
entities remain.
This notion of entity independence can be modified by the application developer using the concept of cascades. Cascades allow certain operations to continue (or "cascade") across an association from one entity to another. Cascades are covered in detail in 第 8 章 关联关系映射.
Why do we spend so much time categorizing the various types of types? What is the significance of the distinction?
The main categorization was between entity types and value types. To review we said that entities, by nature of their unique identifier, exist independently of other objects whereas values do not. An application cannot "delete" a Product sku; instead, the sku is removed when the Product itself is deleted (obviously you can update the sku of that Product to null to make it "go away", but even there the access is done through the Product).
Nor can you define an association to that Product sku. You can define an association to Product based on its sku, assuming sku is unique, but that is totally different.
TBC...
Hibernate makes it relatively easy for developers to create their own value types. For example, you might want to persist properties of type java.lang.BigInteger
to VARCHAR
columns. Custom types are not limited to mapping values to a single table column. So, for example, you might want to concatenate together FIRST_NAME
, INITIAL
and SURNAME
columns into a java.lang.String
.
There are 3 approaches to developing a custom Hibernate type. As a means of illustrating the different approaches, lets consider a use case where we need to compose a java.math.BigDecimal
and java.util.Currency
together into a custom Money
class.
The first approach is to directly implement the org.hibernate.type.Type
interface (or one of its derivatives). Probably, you will be more interested in the more specific org.hibernate.type.BasicType
contract which would allow registration of the type (see 第 6.5 节 “Type registry”). The benefit of this registration is that whenever the metadata for a particular property does not specify the Hibernate type to use, Hibernate will consult the registry for the exposed property type. In our example, the property type would be Money
, which is the key we would use to register our type in the registry:
例 6.1. Defining and registering the custom Type
public class MoneyType implements BasicType {
public String[] getRegistrationKeys() {
return new String[] { Money.class.getName() };
}
public int[] sqlTypes(Mapping mapping) {
// We will simply use delegation to the standard basic types for BigDecimal and Currency for many of the
// Type methods...
return new int[] {
BigDecimalType.INSTANCE.sqlType(),
CurrencyType.INSTANCE.sqlType(),
};
// we could also have honored any registry overrides via...
//return new int[] {
// mappings.getTypeResolver().basic( BigDecimal.class.getName() ).sqlTypes( mappings )[0],
// mappings.getTypeResolver().basic( Currency.class.getName() ).sqlTypes( mappings )[0]
//};
}
public Class getReturnedClass() {
return Money.class;
}
public Object nullSafeGet(ResultSet rs, String[] names, SessionImplementor session, Object owner) throws SQLException {
assert names.length == 2;
BigDecimal amount = BigDecimalType.INSTANCE.get( names[0] ); // already handles null check
Currency currency = CurrencyType.INSTANCE.get( names[1] ); // already handles null check
return amount == null && currency == null
? null
: new Money( amount, currency );
}
public void nullSafeSet(PreparedStatement st, Object value, int index, boolean[] settable, SessionImplementor session)
throws SQLException {
if ( value == null ) {
BigDecimalType.INSTANCE.set( st, null, index );
CurrencyType.INSTANCE.set( st, null, index+1 );
}
else {
final Money money = (Money) value;
BigDecimalType.INSTANCE.set( st, money.getAmount(), index );
CurrencyType.INSTANCE.set( st, money.getCurrency(), index+1 );
}
}
...
}
Configuration cfg = new Configuration();
cfg.registerTypeOverride( new MoneyType() );
cfg...;
It is important that we registered the type before adding mappings.
Both org.hibernate.usertype.UserType
and org.hibernate.usertype.CompositeUserType
were originally added to isolate user code from internal changes to the org.hibernate.type.Type
interfaces.
The second approach is the use the org.hibernate.usertype.UserType
interface, which presents a somewhat simplified view of the org.hibernate.type.Type
interface. Using a org.hibernate.usertype.UserType
, our Money
custom type would look as follows:
例 6.2. Defining the custom UserType
public class MoneyType implements UserType {
public int[] sqlTypes() {
return new int[] {
BigDecimalType.INSTANCE.sqlType(),
CurrencyType.INSTANCE.sqlType(),
};
}
public Class getReturnedClass() {
return Money.class;
}
public Object nullSafeGet(ResultSet rs, String[] names, Object owner) throws SQLException {
assert names.length == 2;
BigDecimal amount = BigDecimalType.INSTANCE.get( names[0] ); // already handles null check
Currency currency = CurrencyType.INSTANCE.get( names[1] ); // already handles null check
return amount == null && currency == null
? null
: new Money( amount, currency );
}
public void nullSafeSet(PreparedStatement st, Object value, int index) throws SQLException {
if ( value == null ) {
BigDecimalType.INSTANCE.set( st, null, index );
CurrencyType.INSTANCE.set( st, null, index+1 );
}
else {
final Money money = (Money) value;
BigDecimalType.INSTANCE.set( st, money.getAmount(), index );
CurrencyType.INSTANCE.set( st, money.getCurrency(), index+1 );
}
}
...
}
There is not much difference between the org.hibernate.type.Type
example and the org.hibernate.usertype.UserType
example, but that is only because of the snippets shown. If you choose the org.hibernate.type.Type
approach there are quite a few more methods you would need to implement as compared to the org.hibernate.usertype.UserType
.
The third and final approach is the use the org.hibernate.usertype.CompositeUserType
interface, which differs from org.hibernate.usertype.UserType
in that it gives us the ability to provide Hibernate the information to handle the composition within the Money
class (specifically the 2 attributes). This would give us the capability, for example, to reference the amount
attribute in an HQL query. Using a org.hibernate.usertype.CompositeUserType
, our Money
custom type would look as follows:
例 6.3. Defining the custom CompositeUserType
public class MoneyType implements CompositeUserType {
public String[] getPropertyNames() {
// ORDER IS IMPORTANT! it must match the order the columns are defined in the property mapping
return new String[] { "amount", "currency" };
}
public Type[] getPropertyTypes() {
return new Type[] { BigDecimalType.INSTANCE, CurrencyType.INSTANCE };
}
public Class getReturnedClass() {
return Money.class;
}
public Object getPropertyValue(Object component, int propertyIndex) {
if ( component == null ) {
return null;
}
final Money money = (Money) component;
switch ( propertyIndex ) {
case 0: {
return money.getAmount();
}
case 1: {
return money.getCurrency();
}
default: {
throw new HibernateException( "Invalid property index [" + propertyIndex + "]" );
}
}
}
public void setPropertyValue(Object component, int propertyIndex, Object value) throws HibernateException {
if ( component == null ) {
return;
}
final Money money = (Money) component;
switch ( propertyIndex ) {
case 0: {
money.setAmount( (BigDecimal) value );
break;
}
case 1: {
money.setCurrency( (Currency) value );
break;
}
default: {
throw new HibernateException( "Invalid property index [" + propertyIndex + "]" );
}
}
}
public Object nullSafeGet(ResultSet rs, String[] names, SessionImplementor session, Object owner) throws SQLException {
assert names.length == 2;
BigDecimal amount = BigDecimalType.INSTANCE.get( names[0] ); // already handles null check
Currency currency = CurrencyType.INSTANCE.get( names[1] ); // already handles null check
return amount == null && currency == null
? null
: new Money( amount, currency );
}
public void nullSafeSet(PreparedStatement st, Object value, int index, SessionImplementor session) throws SQLException {
if ( value == null ) {
BigDecimalType.INSTANCE.set( st, null, index );
CurrencyType.INSTANCE.set( st, null, index+1 );
}
else {
final Money money = (Money) value;
BigDecimalType.INSTANCE.set( st, money.getAmount(), index );
CurrencyType.INSTANCE.set( st, money.getCurrency(), index+1 );
}
}
...
}
Internally Hibernate uses a registry of basic types (see 第 6.1.1 节 “Basic value types”) when it needs to resolve the specific org.hibernate.type.Type
to use in certain situations. It also provides a way for applications to add extra basic type registrations as well as override the standard basic type registrations.
To register a new type or to override an existing type registration, applications would make use of the registerTypeOverride
method of the org.hibernate.cfg.Configuration
class when bootstrapping Hibernate. For example, lets say you want Hibernate to use your custom SuperDuperStringType
; during bootstrap you would call:
例 6.4. Overriding the standard StringType
Configuration cfg = ...;
cfg.registerTypeOverride( new SuperDuperStringType() );
The argument to registerTypeOverride
is a org.hibernate.type.BasicType
which is a specialization of the org.hibernate.type.Type
we saw before. It adds a single method:
例 6.5. Snippet from BasicType.java
/**
* Get the names under which this type should be registered in the type registry.
*
* @return The keys under which to register this type.
*/
public String[] getRegistrationKeys();
One approach is to use inheritance (SuperDuperStringType
extends org.hibernate.type.StringType
); another is to use delegation.
版权 © 2015 麦田技术博客